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I introduce a method to derive mesoscopic particle interactions by macroscopic thermodynamics, which is
suitable for simulation of multiphase fluids by means of the lattice Boltzmann equation. For van der Waals
fluids, the interaction possesses a high-density strong repulsive core and a low-density weak attractive tail,
which looks like the Lennard-Jones potential with replacement of the distance between particles with mass
density. Numerical results on phase separation show a droplet growth scheme rather than spinodal decompo-
sition, and exhibit accurately the equilibrium phase diagram, a convincing interfacial energy property, and
irreversible thermodynamics.
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Particle methods compute the system evolution according
to given interparticle potentials, such as the Lennard-Jones
potential in molecular dynamics and the soft repulsive pair-
wise potential in dissipative particle dynamics �1�. The lat-
tice Boltzmann �LB� equation, although particles are only
allowed to move from one lattice to another without falling
in between, is a particle-based computational technique that
involves interactions and collisions �2�. Shan and Chen first
studied the mesoscale interparticle potentials �3�. After a de-
cade of development, LB methods have achieved a state of
sophistication and have shown considerable success in the
simulation of flows and phase transitions of a wide variety of
mesoscopic fluids under various constraints, such as wetting
and jamming at interfaces �4,5�. However, irreversible ther-
modynamics has been the weak point of the LB model. A
few LB models overcome the difficult by either introducing
new equilibrium particle distribution functions �called equi-
libria hereafter� that compromises the free energy contribu-
tion, e.g., the free energy model �4�, or adding an artificial
body force that creates the irreversible effect �6�. He and
Doolen pointed out recently that an interparticle potential
with short-range strong Enskog repulsive and long-range
weak mean field attractive interactions can produce LB ki-
netic theory that is consistent with thermodynamics �7�. The
aim of the present work is to introduce a generic method to
derive the mesoscopic interactions from the macroscopic
thermodynamics without referring to microscopic or artificial
parameters, and to examine the equilibrium thermodynamic
properties and nonequilibrium transport phenomena of the
LB system with the derived potentials. We begin by consid-
ering the LB equation with a Bhatnagar-Gross-Krook colli-
sion term,

f i�r� + êi�t,t + �t� − f i�r�,t� = −
1

�
�f i�r�,t� − f i

eq�r�,t�� �1�

where f i�r� , t� is the distribution function moving with speed
e�i at lattice point r� and time t. � is the collision time which is
related to the kinetic viscosity of the fluid. f i

eq�r� , t� represents
the equilibria. êi and f i

eq�r� , t� depend on the lattice model and
their values have been derived previously �8�. For the lattice
with N non-zero discrete speed vectors, ��r� , t�=�i=0

N fi�r� , t� is
the mass density and u��r� , t�=�i=0

N fi�r� , t�êi /��r� , t� the speed of

the lattice when the particle interactions are completely ne-
glected. Following the Shan-Chen model �3�, one defines the
interaction potential between lattice points r� and r�� as

V�r�,r��� = � w�r�,r�����r����r��� �2�

where � is a signal function that will be specified later in the
paper. w�r� ,r��� is the weight factor that depends on the rela-
tive position between r and r�. ��r�� is a function of macro-
scopic quantities at lattice point r�, e.g., the mass density and
solute compositions. The interparticle potential presented in
Eq. �2� is based on phenomenological assumptions and pos-
sesses no microscopic mechanism to ensure the validity of
the irreversible thermodynamics. The second law of thermo-
dynamics is ensured by proper definition of ��r��. In the
present work, ��r�� will be derived from the macroscopic
thermodynamics. In the following, we confined ourselves
to an isothermal and chemically homogeneous �no segrega-
tion� system and therefore ��r��=�(��r��). The particle inter-
actions cause a change of particle momentum, and give the
lattice speed in the form u�r , t�=�i=0

N fi�r , t�ei /��r , t�
−�� ��r��rV�r ,r��� /��r , t�. Multiplying Eq. �1� by 1 and
summing over subscript i will lead to a continuum equation,
and multiplying Eq. �1� by e�i and summing over subscript i
leads to the Navier-Stokes equation with the equation of state
at the long-wavelength limit given by

p = �RT +
�RT

2
����2, �3�

which should be identical to the equation of state derived
from thermodynamics.

The total free energy for an isothermal and chemically
homogeneous system is taken to be

G =� ��

2
����r���2 + g���r��,T�	dr �4�

where � is the gradient parameter, and g���r�� ,T� is the free
energy density of the bulk phase with mass density ��r�� and
temperature T. The equation of state is �4�
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p = �
�g��,T�

��
− g��,T� . �5�

Equations �3� and �5� should be identical. One has

1

2
� ����2 = ��

�g��,T�
��

− g��,T�	
 RT − � . �6�

� has been naturally defined by Eq. �6�: �=−1 when the
right-hand side of Eq. �6� is negative, or �=1 when it is
positive. In the LB model, each lattice represents a sub-
system that contains large amounts of atoms or molecules.
Equation �6� is, therefore, suitable for computing interpar-
ticle potentials on each lattice which is a subsystem and
obeys statistical mechanics. To reflect the statistical fluctua-
tion, one adds a noise term to �(��r��):

�„��r�,t�… = ���
i=0

N

fi�r�,t� + ��	 , �7�

where �� � 	1 is the noise intensity and � is a random func-
tion between −1 and 1. The form of the statistical fluctuation
has been widely applied in phase-field models for computing
the kinetic driving force in the simulation of solidification
�9�.

I have now built up the relationship between the mesos-
copic interaction parameter �(��r��) and the free energy den-
sity g���r�� ,T�. To prove the validity of the method I have
carried out a case study for van der Waals fluids. The free

energy density of the bulk fluid is taken to be

g���r��,T� = �RT ln� �

1 − �b
	 − a�2 �8�

where a and b are constant parameters for given materials.
One chooses the energy unit as RTf in which Tf is the refer-
ence temperature. T is the reduced temperature relative to Tf.
The mesoscopic interparticle potential in the long-
wavelength limit, �����2, is calculated by Eqs. �6�–�8� and
plotted in Fig. 1 for �=0, a=1.018 226, b=0.3, and T=0.9.
The interaction potential is repulsive when �
2.45 and the
strength increases sharply with growth of the mass density.
In the region of 0���2.45, a weak attractive interparticle
force exists. The overall shape of the interaction potential is
similar to the Lennard-Jones potential which is widely used

FIG. 1. Mesoscopic interparticle potentials for van der Waals
fluid by the present theory with parameters of �=0, a=1.018 226,
b=0.3, and T=0.9 �solid line�, Shan-Chen model of ����=�0�1
−exp�� /�0�� with �0=1 and �=3 �dashed and dotted lines�, and
linear assumption of ����=�. The unit of the mesoscopic potential
is Joules when the unit of the mass density is kg/m3.

FIG. 2. Mass density at equilibrium by numerical simulations
�scattered symbols� and by theoretical calculation of equilibrium
phase diagram �solid line�. The temperature is the reduced tempera-
ture �with respect to the reference temperature�.

FIG. 3. Equilibrium density profiles normal to a planar interface
for a van der Waals fluids for temperatures 0.87, 0.9, 0.94, and 0.97,
respectively. The unit of the mass density is the same as in Fig. 1.
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in molecular dynamics simulations. The strong repulsive
force plays the role of the hard core. The interaction ap-
proaches zero when �→0, which creates the ideal gas limi-
tation. The mesoscopic potential suggested by Shan and
Chen, with ����=�0�1−exp�� /�0��, is also plotted in Fig. 1
with �0=1 and �=3. The interparticle potential in the Shan-
Chen formula is a monotonic function of mass density and
approaches a finite value for large mass density, which can
produce phase separation, but sometimes the patterns easily
lost. The linear assumption of ����=�, which has been com-
mented on Ref. �7�, is also plotted in Fig. 1. The linear as-
sumption inevitably leads to mass collapse because the larger
mass density possesses larger attraction. The geometric
shape of the mesoscopic interparticle potential developed in
the current work is similar to the microscopic description by
He and Doolen �7�. Its equilibrium and nonequilibrium ther-
modynamic properties will be examined in the following.

Numerical simulations are performed in a D2Q9 �two-
dimensional and nine-sped lattice Boltzmann model� 100
�100 lattice space with the same values of a and b men-
tioned earlier in the paper. One chooses noise intensity �

=0.01, initial mass density �=1.2 and particles distributed
uniformly, relaxation time �=1, homogeneous temperature
distribution with initial vale of T=1 but dropping by 0.01
after each 10 000 time steps, f i

eq=�wi�1+3�êi ·u��
+4.5�êi ·u��2−1.5u�2�, w0=4/9, and wi=1/9 for i=1,2 ,3 ,4
and wi=1/36 for i=5,6 ,7 ,8. The periodic boundary condi-
tion is applied. The fluid phase separates into two rectangular
domains and leaves two planar interfaces �a sphere will have
a smaller surface area only when the volume fraction of one
of the phases is less than 1/��. The time steps of 10 000 are
found sufficient for the system to achieve the equilibrium
state. The mass densities in each bulk phase at equilibrium
for different temperature are recorded and plotted in Fig. 2 as
scattered symbols. On the other hand, the standard routine
for calculation of a phase diagram �CALPHAD�, i.e., the com-
mon tangent law and minimization of the system free energy
at fixed system volume and total mass, is performed and the
theoretical predictions are plotted in Fig. 2 as solid lines.
Numerical simulations using the mesoscopic interaction de-
fined in the present paper are in good agreement with
CALPHAD predictions, which suggests that the correct equi-

FIG. 4. �Color online� Time evolution of phase separation. t= �a� 375, �b� 3750, and �c� 34 120. The simulations were performed on a
512�512 lattice at T=0.98.
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librium thermodynamic properties are reproduced accurately.
To study the effect of relaxation time and noise intensity on
the phase equilibrium, one has also computed the above de-
scribed system with different parameters of �=0.01 with �
=0.8, �=0.01 with �=1.05, and �=0.001 with �=1, respec-
tively. The numerical results are also presented in Fig. 2 as
scattered symbols. It was found that the kinetic parameters
have negligible effect on the equilibrium phase diagram. It is
worth emphasizing that the mass density differences between
two adjacent phases in several simulations are more than one
order of magnitude. The mass density profile across the in-
terface is, as illustrated in Fig. 3 for temperature of 0.87, 0.9,
0.94, and 0.97, in good agreement with classical interface
theory.

The transient behavior of phase separation is studied in a
D2Q9 512�512 lattice with T=0.98. Other parameters take
the same values as presented in the earlier part of the work
��=0.01, �=1, and the others the same as before�. Figure 4
shows the domain morphology at time steps of 375, 3750,
and 34 120 separately. The initial system is uniform. The
noise term that represents the statistical fluctuation in Eq. �7�
causes the nucleation of new phases. Although the initial
bubble nuclei are small, the mass densities inside the drop-
lets are close to their equilibrium value, as illustrated in Fig.
4�a�. The small bubbles are coalescing and form larger and
larger bubbles as the time evolves. Figure 4�b� contains coa-
lescing bubbles in the view field. Spherical bubbles are illus-
trated in Fig. 4�c�. The interface during the system evolution
is clear and of the same thickness. In the simulation, the
mass density at each lattice point is calculated and their val-
ues are inserted into Eq. �8� for the calculation of the free
energy of the bulk phase. The evolution of the bulk free
energy is illustrated in Fig. 5. The bulk free energy is not the
total system free energy because the gradient contribution
has not been counted. However, the contribution from the
mass gradient to the system energy decreases as the interface
area is reduced due to bubble coalescence during system
evolution. The bulk free energy illustrated in Fig. 5 shows
that the free energy of the system is dropping during phase
separation. The irreversible thermodynamics in the scheme
is, therefore, obeyed.

The numerical stability in particle methods is related to
the time step. The time step is determined by the stiffness of
the particle interactions. A softer potential allows a larger
time step. The interparticle potentials derived in the present
work, as illustrated in Fig. 1, are substantially softer than the
potentials given by a hard sphere model. The numerical
simulation in the current work is found very stable and the
system free energy decreases toward the equilibrium value
monotonically. He et al. studied the numerical instability
caused by the stiffness of the hard sphere model �Enskog’s
theoretical treatment of the exclusion-volume effect� in the
LB simulation and suggested a modification scheme to re-
duce the effect of stiff repulsion �10�. The basic idea of the
modification is to multiply by a small factor so that the origi-
nal stiffness is reduced substantially. For some softer inter-
particle repulsions, such as the pair interaction potential that
was used in dissipative particle dynamics, the numerical
scheme can be stable for an even larger time step �11�.

The interfacial energy has been the crucial and most dif-
ficult point to address in LB models. The thermodynamic
theory requires the relationship between surface tension and
gradient of density in the form �12�

�theo = ��
−�

+�

����2dz �9�

where � is a constant for an isothermal system and �=�0
−�TT ��T�0� when the thermocapillary effects are included
�13�. However, the nearest-neighbor LB model gives the sur-
face tension �LB= ��� � /2��−�

+� ����2dz, which implies that the
nearest-neighbor-based LB models will be thermodynami-
cally inconsistent unless ����=��� �7�. In the current work
one has

����2 = b − 0.5�b2

�1 − �b�2 −
a

T
�2
� b

1 − �b
−

a

T
	����2.

�10�

To study the discrepancy between thermodynamic theory and

FIG. 5. Time evolution of bulk free energy during phase sepa-
ration. The unit of bulk free energy is multiplied by the volume of
a lattice cell.

FIG. 6. Interfacial energy coefficient with respect to tempera-
ture. The scattered points are from statistical calculation by using
Eq. �9�. The straight line is ��1.77−1.4T. T is the reduced
temperature.
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our model, I calculated �=�r ���(��r� ,T�)�2 /�r ����2 for
those numerical data that Figs. 2 and 3 are also based on, and
have plotted the result in Fig. 6. A linear relationship be-
tween � and T is revealed. Data fitting shows ��1.77
−1.4T, which is in good agreement with thermodynamic
theory on surface tension with thermocapillary effects �13�.
It implies that the discrepancy between the interface proper-
ties obtained by the current work and the thermodynamic
theory is negligible.

The reason for the correct reproduction of interface prop-
erties can be understood from a combination of Fig. 3 and
Eq. �9�. It can be seen from Fig. 3 that the interface thickness
is slightly different at different temperatures. The interface

energy is related not only to density gradient but also to the
interfacial thickness, as expressed in Eq. �9�. Take into ac-
count the effect of interfacial thickness as well as the density
gradient gives the correct interface properties.

In summary, I have developed a method to define mesos-
copic interparticle potentials according to the macroscopic
free energy, which gives good agreement with equilibrium
properties, such as the phase diagram and interfacial energy,
and nonequilibrium behavior such as irreversible thermody-
namics.
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